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AN IRREVERSIBLE CONSTITUTIVE LAW FOR MODELING THE DELAMINATION

PROCESS USING INTERFACE ELEMENTS
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An irreversible constitutive law is postulated for the formulation of interface elements to predict initiation
and progression of delaminafion in composite structures. An exponential function is used for the constitutive
law such that it satisfies a multi-axial stress criterion for the onset of delaminafion, and satisfies a mixed mode
fracture criterion for the progression of delaminafion. A damage parameter is included to prevent the restoration
of the previous cohesive state between the interfacial surfaces. To demonstrate the irreversibility capability of
the constitutive law, steady-state crack growth is simulated for quasi-static loading-unloading cycle of various
fracture test specimens.

INTRODUCTION

Delamination in composite structures usually originates

from geometric discontinuities and material defects such as
free edges, dropped plies, re-entrant comers, notches, and

transverse matrix cracks. Recently, significant progress has
been made in the development of tools to predict intralam-
inar damage, which often precedes the onset of delamina-

tion. Delamination can be a major failure mode in compos-
ites structures and can lead to significant loss of structural
integrity. The virtual crack closure technique (VCCT) 1, 2

has been successfully used in the prediction of delamination

growth. However, an initial delaminated area must be prede-
fined and a self-similar crack growth is assumed.

To overcome the limitations associated with the VCCT,

interface elements can be located between composite lam-
ina to simulate initiation of delamination and non-self-similar

growth of delamination cracks without specifying an initial
crack. Delamination is initiated when the interlaminar trac-

tion attains the maximum interfacial strength, and the de-
lamination front is advanced when the local surface fracture

energy is consumed. A softening constitutive law that relates
tractions to the relative displacements is generally used to for-

mulate interface elements. The softening constitutive law is
based on the Dugdale 3 and Barenblatt 4 cohesive zone model
to expunge the singular stress field ahead of the crack-tip en-
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countered in linear elastic fracture mechanics. The softening
portion of the constitutive law models the degradation of the
material ahead of the crack-tip. For laminated composites

this degradation includes nucleation, growth and coalescence
of microcavities. Hilleborg 5 developed the first comprehen-

sive interface finite element model and applied this method in
concrete cracking. Later, Needleman 6 developed a cohesive-

decohesive formulation to simulate dynamic crack growth in
isotropic elastic solids.

The exact mathematical form of the interfacial constitu-

tive law is less important than its capability to represent the

maximum interfacial strength and critical fracture energy.
Functions with continuous derivatives have a numerical ad-

vantage over functions with discontinuous derivatives when

used with Newton-Raphson method because the tangent stiff-
ness is smooth. A smooth tangent stiffness as a function of

the relative opening displacement has been found to mitigate
the numerical oscillations encountered in using a softening

constitutive relation and to eliminate oscillatory convergence
difficulties 7.

The exponential function for the softening constitutive law

is smooth and mimics the physics involved in the separation
of two atoms initially bonded s. This form of the constitutive

law has been used in the analysis of crack initiation, dynamic
growth, branching, and arrest in homogeneous materials 9.

Shahwan and Waas 1° used it to study delamination of com-
posite structures caused by compressive loads. The various

exponential constitutive laws that have been successfully em-
ployed to simulate delamination are based on the assumption

that the consumed local surface fracture energy can be recov-
ered. This assumption is not valid for structural systems with
stresses that may internally redistribute upon external load-

ing. The cracks may arrest and cracks faces may close. Ortiz
and Pandolfi 11 postulated a damage model and used an expo-
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nential constitutive law to account for such irreversibilities.

A limitation of this model is that the critical energy release
rates and the maximum interfacial strengths associated with

Mode I, Mode II, and Mode III fracture cannot be specified
separately.

The present work aims at the establishment of an exponen-
tial softening constitutive law that satisfies empirical mixed-

mode delamination failure criteria for the onset and progres-
sion of delamination. An internal state variable is included

in the constitutive law to permanently damage the internal

surfaces that have exceeded maximum strength during the de-

formation process. The paper is structured as follows: (i)
mixed-mode fracture criteria, (i) mechanics ofinterfacial sur-
faces, (ii) interface finite element, (iii) finite element results,

and (iv) concluding remarks.

MIXED-MODE FAILURE CRITERIA

A quadratic failure criterion based on interlaminar tractions
has been used to predict onset of delamination 12. To simu-

late the progression of delamination under mixed-mode load-
ing conditions, the power law form of the fracture criterion

that includes Mode I, Mode II and Mode III interaction has
been successfully used with a bilinear constitutive law 13 15.
Dfivila and Camanho 16 developed a bilinear constitutive law

that can be used with any mixed-mode failure criterion 16. To
the authors' knowledge, no work has been found incorporat-

ing empirical failure criteria into the exponential softening
constitutive law. A brief description of the failure criteria

used in this paper is presented next.

Criterion Jor the Onset of Delamination

Under pure Mode I, Mode II, or pure Mode III loading, the

onset of delamination occurs when the corresponding inter-
laminar traction exceeds its respective maximum interfacial
strength. However, under mixed-mode loading, delamination

onset may occur before each traction component reaches its
maximum interfacial strength. An expression that considers

the interaction between the traction components under mixed-
mode loading is the multi-axial stress criterion given as

°

where Tj is the interlaminar traction component associated

with the j-direction, Tj_ is the maximum interlaminar trac-
tion, and (g} g, ifg > 0, otherwise it is zero. This function
has been included to emphasize that the normal compressive

traction T3 does not contribute to the onset of delamination.
In Equation 2, T_ is an effective normalized traction, and

ct _> 2 is a real number that determines the shape of the
tri-dimensional failure surface. The quadratic delamination

interaction is recovered from Equation (1) with ct 2. The
failure surface for c_ 2 is a convex semi-sphere in the space

of normalized tractions Tj/Tj _, j 1, 2, 3. As the value of
c_is increased, the failure surface approaches a half-cube sur-
face.

Criterion Jbr Progression of Delamination

Delamination propagates when the energy release rate
equals its critical value under pure Mode I, Mode II, or

pure Mode III fracture. Generally, delamination growth oc-

curs under mixed-mode loading. Under this type of load-
ing, delamination growth might occur before any of the en-
ergy release rate components attains its individual critical

value. The power law criterion based on the one proposed
by Whitcomb is is

_scJ + t,_] + t,_] 1 (2)

where Gj is the energy release rate under Mode j fracture,

and Gjc is the single-mode critical energy release rate for
j I, II, III. The material parameter ct defines the shape

of the failure locus. For c_ 1, one recovers the linear
interaction criterion 19. The shape of the failure locus is a tri-
angular surface. The shape of the failure surface approaches
a 1/8-cube surface as c_ increases from 2. Reeder 2° evaluated

different fracture criteria for mixed-mode delamination in a

brittle graphite/epoxy composite, a toughened graphite/epoxy
composite, and a tough graphite/thermoplastic composite us-

ing the mixed-mode bending (MMB) test specimen. The
power law criterion was a reasonable fit to the test data for

the three different materials. Thus, the failure criterion in
Equation (2) is incorporated into the constitutive law of the
interface material.

MECHANICS OF THE INTERFACIAL SURFACES

Interracial surfaces consists of an upper surface S + and

lower surface S . The upper surface corresponds to the up-

per bulk material, and the lower surface corresponds to the
lower bulk material. The surfaces S ± are coincident with a

reference surface S o in the undeformed configuration as is

shown in Figure 1. Thus, it is said that the interface material
is of zero thickness. The surfaces S ± independently displace

and stretch, and are connected by a continuous distribution
of nonlinear springs that act to resist the Mode I opening or

Mode II and Mode III sliding of the upper and lower surface.

It is convenient to define a mid-surface 5'_< where the trac-

tions and relative displacements are evaluated. For this pur-
pose, let us consider any two points P+ and P contained
in S + and S and coincident in the undeformed configura-

tion. The locus of the midpoints P_< of the line joining P+
and P define the mid-surface 5'_< of the interface material.

Refer to Figure 2. The normal and tangential components of
the traction and relative displacement vector are determined

by the local orientation of the mid-surface S _. The virtual
work done by the cohesive-decohesive tractions is given by

5_,_ [[ 5/_j mj dS _ (3)
J J_S' _n

for any kinematically admissible relative displacements/_j,

where _ are the interlaminar traction components acting on
a unit deformed area conjugate to the relative displacements,
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Fig. 2 Interface material mid-surface.

and S _ is the surface area. The resistive tractions that are

associated to the relative displacements at the point P_ are
shown in Figure 2. The interlaminar normal traction is de-

noted T3 and the tangential tractions are denoted T1 and T2.

In the next section, the components of the relative displace-
ments are obtained in terms of the displacement field with

respect to the undeformed configuration. Next, the consti-
tutive equations that relate the relative displacements to the

traction field are presented. The kinematics and the con-
stitutive modeling fully describe the mechanics of interface

debonding.

Kinematics of the InterJhce Material

The fundamental problem introduced by the interface ma-

terial is the question of how to express the virtual relative
displacements between the surfaces S ± in terms of virtual
displacements. As shown in Figure 1, consider a three-

dimensional space with Cartesian coordinates X/, i 1, 2, 3,
and let there be surfaces S ± coincident with S o defined in

this space by Xi Xi (r/l, r/2), where _/1, _/2 are curvilinear
coordinates on the surface S O.

Let the Cartesian coordinates x_ x_(rll,rl2),i 1,2,3
describe motion of the upper and lower surfaces S ± in the
deformed configuration. Any point on S ± in the deformed

configuration is related to the same point on S ° through

x_ Xi + U? (4)

Interface material deformation.

where U_ are displacement quantities with respect to the

fixed Cartesian coordinate system. The coordinates x_ _

x_(rll,rl2),i 1, 2, 3 define the mid-surface S'_ given by

1 1
x7 + + (u? + ) (s)

The surface S _ is coincident with S O in the undeformed

configuration. As mentioned earlier, the components of the
relative displacement vector are evaluated at the mid-surface
S '_. Therefore, the local orientation of normal and tangential

unit vectors to the surface S '_ is required. This is,

j" }T (6)
rl I. 0I]1 ' 0I]1 ' 0I]1

, Ox }-- , , (7)
r2 [ 0_12 0_12 0_12

and the normal vector is simply

' (8)r3 rl X r 2

The tangential vectors rl, r_ may not be perpendicular in a
curvilinear coordinate system so that,

r2 r3 × rl (9)

For i 1, 2, 3, the normal and tangential unit vectors to the
surface S '_ at a point P'_ E S '_ are

ri
l'i (10)

Iril

These unit vectors define the local orthogonal coordinate
system at S _ and is related to the fixed coordinate system
through the rotation matrix

R [rl, r2, r3] (1 1)

The normal and tangential components of the relative dis-
placement vector expressed in terms of the displacement field

is,

/_i Rji(x + - xf) Rji (V + - Vj) (12)

where/_ji are components of the rotation matrix. Since x__
depends on the displacements U_, the rotation matrix also
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depends on U_. Therefore, the virtual relative displacement
are expressed in terms of the virtual displacements as follows,

5Ai (Rji+U+_)aU+-(Rji+ ORki'_

5/_i + +%/uj - %/uj (13)

Equation (13) is substituted into Equation (3) to obtain the

expression of the internal virtual work in terms of the virtual
displacements. This form of the internal virtual work is con-

venient for the finite element formulation. In addition, the
differential surface area of the mid-surface dS '_ in the de-

formed configuration is expressed in the form,

dS _ MdS ° (14)

where M is a function of the displacement field U_, and dS °
is the differential undeformed surface area.

Constitutive Equations Jbr the Interfitce Material

The stress singularities at the crack-tip in the linear elas-
ticity solutions, stemming from the sharp slit approximation,

cannot be reconciled with any realistic local rupture pro-

cess. From the molecular theory of strength it is known that
there exists stress limits for which molecular bond rupture
occurs. The softening-type of cohesive zone model is in-

tended to represent the degradation of the material ahead of
the crack-tip. It captures strength-based bond weakening, and

fracture-based bond rupture. The mechanics of the delam-
ination process comprises three interrelated phases: (i) the

initiation of delamination, (ii) the evolution of the degrada-
tion zone, (iii) and the delamination growth. The first phase
that takes place is the initiation of delamination, and it is

based on a stress limit determined experimentally. A stress

measure that is used as the limiting value, may involve an in-
teraction of interlaminar stresses such as the equivalent Von
Mises stress, or that in Equation (1). The second event is the

development of a zone ahead of the crack-tip that experiences
intense deformation such as plastic deformation in metals,

elongated voids that contains a fibrous structure bridging the
crack faces in polymers (crazing), and high density of tiny
cracks in brittle ceramics. The molecular bonds are weakened

and the nonlinear softening behavior is confined in this degra-
dation zone, or process zone. The third event, is the growth

of delamination, bond-rupture, and it is based on a fracture

criteria such as Equation (2). The constitutive equations to be
developed, mathematically describe these three delamination
phases. The focus of this section is to develop the consti-

tutive equation for single-bond rupture based on continuum
damage mechanics approach. This particular case is extended

to mixed-mode delamination. The constitutive equations that
are postulated in this section, are shown to satisfy the failure

criteria for initiation and progression of delamination pre-
sented in the previous section.

Let assume that the two points P+ and P contained in

S + and S as shown in Figure 2 are connected with a spring.
The points are coincident when the spring is unstretched, and

08 /4' i \, \
0.6 _ I:/ '1 '\,

:r/:re //J _ ',,
/,04 '

0.2 /I

/3 =5.4\
\

0 "_

0 1 2

_/3=1

\_/3 = 2.2

3 4 5

A/A _

Fig. 3 Traction-Stretching curve of spring as a function of

a high spring stiffness maintains the points together. Under
isothermal conditions, the traction T that acts to resist the

stretching/_ of the spring is expressed as

T(/_) T_/_ exp ( 1 -/V 37_ ) (is)

where/_ /_//_, and T _ is the maximum bonding strength
that occurs at the critical stretching value/_. The parameter

/3 with/3 _> 1 and/3 E IR+ defines the stretching range for
which the bond is weakened before complete rupture occurs.

It is in this range, that damage accumulates. In Figure 3, the
traction-stretching curve is shown for different values of the

parameter/3. The work of debonding per unit area, G_, is
given by the area under the traction-stretching curve, or,

G_ T(/_)d/_ (16)

T_/_/3( _ _)/_ r [-_] _xp (_)

P[z] is the Euler gamma function of z, and P[1/2] x/_.

By prescribing T _, G_, and/3 in Equation (16), the parameter
/_ can be computed. The exponential function in Equation

(15) is a suitable representation of a softening constitutive law
because with increasing stretching of the spring/_, the trac-
tion T increases to a peak value T _ and then decreases until

complete debonding occurs. Equation (15) is only valid for
monotonically increasing separation because the consumed

debonding energy can be recovered upon unloading.

An internal state variable ct that tracks the damage state of

the spring needs to be included in Equation (15) to account
for irreversible effects. In the following irreversible law an

elastic damage model instead of a plastic damage model is
assumed,

T(/_) TC/_ exp ( 2 -/_/c_- c_)/3 (17)

Within the framework of continuum damage mechanics, it
is possible to impose restrictions on d. It must increase as a
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Fig. 4 Traction-stretching curve as a function of the evolution
of damage of the spring with/_ 1

function of time because thermodynamics requires that the ir-

reversible dissipation associated with the debonding process

remains semi-positive, i.e., _ _> 0. An equivalent mathemati-

cal expression is

c_(t,) max (1, c_(t, 1), A/3(_,)) , ct(°) 1 (18)

with ti > ti 1. If the spring is assumed undamaged at t

to, then the initial condition is ct(_°) 1. Equation (17) is

equivalent to Equation (15) if no damage occurs, ct 1, or

for monotonic increasing loading, d /k_. Unloading does

not occur linearly to the origin, but with an exponential form.

The energy of dissipation associated to fatigue is neglected

in this work. This assumption is valid in the case of a spring

that undergoes a small number of loading-unloading cycles.

Thus, future work will be aimed at extending the Equation

(18) to incorporate fatigue.

Equations (17) and (18) with /3 1 are used for the

traction-stretching curve in Figure 4. The labels 1, ..., 6 in this

figure, represent the damage evolution of the spring connect-

ing P±. The spring is unstretched at point 1. With increasing

stretching, a cohesive traction develops to resist the separa-

tion. At point 2, the spring stiffness holds P± together in the

quasi-linear range of the law. The onset of delamination oc-

curs at point 3, where the traction attains its maximum value.

As the spring is stretched beyond the onset of delamination

to point 4, damage is accumulated in the spring and the trac-

tion gradually decreases. The spring is partially unstretched

from point 4 to point 5, and unloading occurs. The spring is

stretched again to point 6, and the loading traction-separation

curve is exactly retraced upon unloading. The traction even-

tually vanishes as the spring is stretched.

Equations (17) and (18) are extended to the mixed-mode

delamination case. To develop the constitutive equations, it

is convenient to normalize the relative displacements Aj and

the tractions Tj with respect to the critical separation values

A_ and the maximum interfacial strengths T_,

/kj /kS/k_, Tj Tj/T_ (19)

In reference to Figure 2, the components of the normalized

relative displacements between P± with respect to the orien-

tation of the surface S '_*at a point P'_* is,

v A1 il +/k2 i2 +/k3 i3 (20)

where il, i2, i3 are the unit vectors normal and tangent to the

surface S _* at a point P_*. An effective relative displacement

,k is defined by the norm of v

_//k12 +/k22 + A_ (21),k

We assume that the normalized scalar traction T_ acts along

the direction of v to resist the effective relative displacement

,k. The proposed constitutive law for the interface material is

defined along v,

T_(/kl,/k2, A3) A Q(/kl,/k2, A3) (22)

where Q is a decreasing function of any of the normalized

relative displacements/kj, j 1, 2, 3. The components of

the traction acting along v, normal and tangent to the mid-

surface S '_ at a point P'_ is

v ±j Q (23)
Tj _iJ.livl I

for j 1, 2, 3. The function Q is chosen to satisfy the

multi-axial stress criterion in Equation 1 for the onset of de-

lamination and the mixed-mode fracture criterion in Equation

2 and is given by

Q exp( 2 - #/3/c_- _)/3 (24)

with a scalar mixed-mode parameter # that couples the nor-

malized relative displacements for the opening and sliding

mode

. + 1±21 + (25)

where I1 is the absolute value function, and (g) g if g > 0,

otherwise it is zero. The material parameter ct defines the

shape of the failure surface for the onset and progression of

delamination. The internal state variable d is given by,

c_(t,) max(1, c_(t, 1),#_)), c_(o) 1 (26)

The constitutive equations are slightly modified to take into

consideration the mechanical behavior of the interface mate-

rial under contact conditions. The surfaces S ± are assumed

smooth so that frictional effects can be neglected. When con-

tact is formed between two smooth surfaces, the equilibrium

largely depends upon the distribution of elastic forces in the

contacting surfaces. Two surfaces are under contact at a point

P'_, P'_ E S '_ if the relative displacement/k3 between P±

is less than zero. For/k3 < 0, a large repulsive traction T.a

develops to avoid interpenetration of the surfaces S ± at P'_L

The constitutive equations for mixed-mode delamination are
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obtained from Equations (23) to (26), and summarized as fol-
lows

T2 A2 exp (27)
T3 (±3) 3

+ 0 exp )3
-(-±3)

A2 _3A3 with _2 and _3 fixed during the loading history.
The terms in Equation (2) are evaluated as follows,

°/2 r3iA,,A2,A3) A3o/2
\ £

and _, _ > 1 is an interpenetration factor to magnify the re-
pulsive force T3, and chosen arbitrarily. Equations (26) and
(27) reduce to Equations (17) and (18) for single-mode de-
lamination.

The empirical parameters governing the constitutive

equations in (27) are the critical energy release rates Gsc,

Gist, GIII_; the maximum interfacial strengths T_, T,_, T,_;
and the the critical separation values A_, A_, A_. These may
be specified based on atomistic models of separation or on

a phenomenological basis depending whether the separation
process is governed by ductile void coalescence or a brittle

cleavage mechanism. By specifying the critical energy
release rates and the maximum interracial strengths, one can
obtain the critical separation values. The path independent J-

integral along a boundary that contains the interface material
can be used to show that the area under the traction versus

separation curve is the work of fracture per unit area. Equa-
tion (16) under pure Mode I, Mode II, or Mode III fracture,

is used to obtain the critical separation values A_, j 1, 2, 3.

LA*T,(A,, A2,A3)dA,)

+  2(A3)

(<,,

( ++3(A3))

where ¢0 (A3), j 1, 2, 3 are exponential decaying functions
with increasing A3. The progression of delamination occurs

when the functions ¢0 (A3) , j 1, 2, 3 are virtually zero.
Adding the last three equations shows that the power criterion
in Equation (2) is satisfied. •

Proof. The exponential constitutive law in Equations (26)

and (27) satisJ_ Equation (1)Jbr the onset of delamination,
and Equation (2) Jbr the progression of delamination.

For simpl_ity, monotonically increasing loading is as-
sumed, i.e., d #_. The effect of interpenetration is also
neglected, A3 > 0. For the onset of delamination, the com-

ponents of the traction vector in Equation (27) are substituted
into Equation (1) to obtain the effective traction T_,

This equation is analogous to Equation (15) for single-mode
delamination. In view of Equation (28), delamination onset

occurs when # 1. At this value of #, the effective traction
attains the maximum value of one. The failure criterion in

Equation (1) predicts delamination onset at an effective trac-
tion equal to one. Therefore, with the proposed constitutive

law in Equation (27) delamination initiates when the criterion
in Equation (1) is satisfied.

For the progression of delamination, proportional straining

is assumed. The relative displacement associated to the slid-
ing Mode II and Mode III are written as A1 _2A3 and

INTERFACE FINITE ELEMENT

The formulation for the interface element is based on the

work of Beer 2s. A non-linear solution procedure is necessary

because of the geometrical nonlinearities and the nonlinear
mechanical behavior of the interface material. The objective

of this section is to obtain the tangent stiffness matrix K_ and

the internal force vector fi_t required in the nonlinear solution
procedure.

A 2n-noded isoparametric interface element with 6n de-
grees of freedom and applicable to three-dimensional analysis

is used. The element consists of an upper and lower surface
5'_ with n-nodes each. The natural coordinate system is rll

and r12. For the surfaces Sff, node j has three translational
± ± ±

degrees of freedom qu, q2j, q3j with the first subscript imply-
ing the associated global direction. The nodal displacement
vector q is arranged as follows,

q {q+,q }m (29)

q± {..., ± ± ± ...}mqu ' q2j, q3j,

and j denotes the node number, j 1, ..., n. The displace-

ment field U_ (rls, r12), j 1, 2, 3 for the surfaces S_ are
independent and in terms of the global displacement degrees

±
of freedom qij

U/(II1,II2 ) q_JV,_(111,112 ) (30)
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where N, is the shape function corresponding to the n-th de-
gree of freedom. Substituting Equation (30) into Equation
(13) gives,

5/_i + +QjiN, fiqj,r_ - QjiN, fiqj, (31)

Equation (31) in matrix form is,

5/_ [Q_ N, _QT N] 5q

[B+, -B ]Sq BSq

(32)

where N is

N [..., Nj I, ...], j 1,...,n (33)

and I is a 3 × 3 identity matrix. Equation (32) relates the
relative displacement to the nodal displacement degrees of
freedom.

The internal force vector of the interface element is ob-

tained by substituting Equation (32) in (3),

5Wint 5qT/J_s' BTT dS_ T5q fint

2
(34)

where T is the traction vector acting on the deformed mid-

surface and the integration is performed over the deformed
element mid-surface. In numerical analyses, the internal

force vector needs to be computed accurately, and the tan-
gent stiffness matrix may be computed approximately. The

computation of the tangent stiffness matrix is intensive and
a very accurate expression is not required. Therefore, the
partial derivatives of the differential area in Equation (14) is

neglected. For the computation of K_, the derivatives of the
rotation matrix with respect to the nodal displacements are

neglected. This approximation with Equation (32) leads to

B + B B_

5/_ [B_,-B_]Sq B'Sq

(35)

Thus, the approximate tangent stiffness matrix is,

K_ Of_toq_/fs'_l B'TDB' dSS
(36)

where D is the material tangent stiffness, and is later defined.

Equation (36) is rewritten using the relation in Equation (35),

K_) [ K__K_ -K_]K_ (37)

where

K_ /fs' _1BsTDBs dS_ (38)

The internal force vector is accurately computed, while the
approximations for the tangent stiffness matrix save compu-

tational time because only a quarter of the full matrix has to
be computed.

Material Tangent Stiffhess

The components of the material tangent stiffness D are ob-
tained in the incremental form,

oT_
5Ti _SAj DijSAj (39)

First consider the case in which there is no interpenetration,
that is, for/_3 > 0. The components of D are obtained by
differentiation of Equation (27) according to Equation (39),

Dij T: 5ij i/_jl_ 2 Q (40)

where 5ij is the Kronecker delta, Q is given by Equation (24),
and @ is defined by,

1 if 3 #z@ ct if el> #;_ (41)

Now consider the case for which interpenetration is de-

tected, that is,/_3 < 0. The non-zero components of D are
given by Equation (40) for i, j 1, 2 and the component re-

lated to interpenetration,

D33 Ko (1 + _ 1/_31/3) exp (_ 1_-31/3 ) (42)

where Ko T_ exp(1//3)//_. The range of the values

of D33 should be restricted by two conditions: (1) A small
D33 induces interpenetration, and (2) a large D33 produces
ill-conditioned matrices. A list of references on these restric-

tions is given by Dfivila et al. 22. The value of D33 should be
in the range,

106 N/mm 3 < D33 < 107 N/mm 3

The upper bound of the condition cannot be guaranteed be-

cause of the exponential nature of Equation (42). Therefore,
for/_3 < 0, the expressions T3 and D33 are modified to have
the form

T3 Ko/_3, D33 Ko (43)

and Ko T2 exp(1//3)//_.

The material tangent stiffness is non-symmetric, and can be

positive definite, semi-definite, or negative definite. For # >

1, the matrix Dij is negative definite. The material tangent
stiffness matrix has properties of an anisotropic material, one
which has strong dependence on the relative displacements

in all directions. For single-mode delamination, D is fully
diagonal, otherwise, some of the off-diagonals are non-zero.

Consistent and Inconsistent Tangent Stiffhess

For the full-Newton-Raphson nonlinear solution proce-
dure, the consistent tangent stiffness matrix is used in the
finite element analysis. However, when softening constitu-

tive laws with the consistent tangent stiffness are employed,
the tangent stiffness matrix is often ill-conditioned and a
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converged solution may not be obtained 23. An alternative

solution is to refine the mesh ahead of the crack-tip or the
decrease the maximum interfacial strength 14,24. Refining the

mesh size increases the computational time, and lowering the
maximum interface strength can result in a premature initia-
tion of delamination _. Alternatively, researchers often utilize

a positive definite matrix such as the material secant stiffness

when dealing with softening constitutive laws. However, a
large number of iterations results in using the material secant

stiffness. As an alternative, three different modifications to
the tangent stiffness matrix eliminate these convergence diffi-

culties while a converged solution can be obtained in a small
number of iterations:

1. Equation (36),/£[i max(0,/£[i), i 1, 2, ..., 2n

2. Equation (37), K_ max(0, K_), i 1, 2,..., n

3. Equation (40), Dii max(0, Dii), i 1, 2, 3

The convergence rate of option 1 is better than option 2, and
the convergence rate of option 2 is better than option 3. If the

mesh is coarse, is better to choose option 3.

Contact Elements'

Interface elements were developed to model initial delam-

inated surfaces. All the components of the material tangent
stiffness is zero, except for the case in which interpenetra-

tion is detected. If interpenetration is detected Equation (43)
is used. Thus, these interface elements act like contact ele-
ments.

FINITE ELEMENT RESULTS

Numerical results are presented for quasi-static loading and
unloading of the double cantilever beam (DCB), the end load

split (ELS), end notch flexure (ENF), and fixed ratio mixed
mode (FRMM) fracture test specimens. Results are also pre-
sented for quasi-static loading of the mixed mode bending

(MMB). Mode I fracture occurs in the DCB specimen, Mode
II occurs in the ELS and ENF specimens, and Mode I and II

occur in the FRMM and MMB. The fracture test specimens
are shown in Figure 5.

Mode I and mixed-mode test specimens are modeled with
the laminate stacking sequence [0_] and the unidirectional
material properties of Graphite-Epoxy listed in Table 1. An

isotropic material with E Ell and u u12 are used for the

Mode II test specimens rather than composite. The maximum
interracial strength and the critical energy release rates are
listed in Table 2. The geometrical properties are the length

L 100 ram, the arm thickness h 1.5 ram, and width
B 10 ram. For the DCB, the geometrical properties are dif-

ferent from the other test specimens: L 150 mm, h 1.5
ram, and B 20 ram. The initial crack length ao of each test

specimen is: DCB - 50 ram, ENF - 30 ram, ELS - 50 ram,
FRMM - 40 ram, and MMB - 20 ram.

The interface elements are positioned between the up-

per 0° laminate and the lower 0° laminate. Delamination
is constrained to grow in the plane between the upper and

Table 1 Graphite-Epoxy Properties

Ell E22, E33 G12, G13 G23 v12 v13 v23

150.0 GPa 11.0 GPa 6.0 GPa 3.7 GPa 0.25 0.45

Table 2 Interface Material Properties

T1, T2 T3 Gic Giic, Giiic Kh

80 MPa 60 MPa 0.352N/mm 1.45N/mm 10 7N/mm 3

lower laminates. Interface elements with contact properties

were placed along the initial crack length and interface el-
ements formulated with the softening law are placed along
the bonded length. The upper and lower laminates are mod-

eled with C3D8I incompatible-mode 8 node solid element
available in ABAQUS. Each laminate is modeled with one

element through the thickness, 100 elements along the length
of the laminate, and one element across the width. See Fig-

ure 6a. For the DCB, three elements along the width are
used. The eight node isoparametric interface element for
three-dimensional analysis shown in Figure 6b is compatible

with C3D8I solid element. The element was implemented

in the commercial finite element code ABAQUS as an UEL
subroutine. Three point Gauss integration is used for the
computation of the tangent stiffness matrix and internal force
vector.

An incremental-iterative approach is adopted for the non-

linear finite element analysis, and the Newton's method avail-
able in ABAQUS is used to trace the loading path of the spec-

imens with a displacement-control analysis. For the MMB,
the Riks method available in ABAQUS is used. The modifi-
cation to the tangent stiffness matrix mostly used is option 2

discussed in the section of interface elements. The response
of the test specimens is characterized by the load-deflection

curve. A typical finite element model of one of the test spec-
imens consists of about 300 elements, and 2000 degrees of

freedom. The computational time required was about 1200
seconds of CPU time on a Sun Solaris 2000. The average

number of iterations per load increment is 7.

The finite element solutions are compared to the beam

analytical solutions derived from linear elastic fracture me-
chanics. The analytical solutions for the DCB and ENF are
given by Mi et al. 14, and for the FRMM and ELS are given

by Chen et al. 24. The finite element solutions for the MMB
test specimen are compared to the analytical solution in the

appendix.

The DCB test specimen shown in Figure 5a is used to de-

termine the interlaminar fracture toughness in Mode I. The
load w is symmetrically applied, equal and opposite at the
tip of the upper and lower arm of the DCB test specimen.

The corresponding reaction force P is computed. The other
end of the specimen is clamped. The response of the DCB is
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shown in Figure 7a. For a loading-unloading cycle, excellent

agreement of the FEM results are obtained compared to to

the closed form solutions and to the experimental data. A top

view of the Mode I specimen near the delamination front is

shown in Figure 7b. Non-self-similar crack growth occurs be-

cause of the anticlastic bending effect. The tangent stiffness

matrix in the Newton-Raphson methods did not converge at

the limit point because of the large value of the maximum

interracial strength, T c. The T c was reduced by half of its

original value and a converged solution was obtained. Any of

the modifications to the tangent stiffness matrix discussed in

the section of interface elements, produced converged solu-

tions without having to modify the originial value of T _.

The ELS and ENF test specimens shown in Figure 5b and

5c are used to determine the interlaminar fracture toughness

in Mode II. For the ELS, the load P is applied at the tip such

that the lower arm of the ELS remains in contact with up-

per arm. The other end of the specimen is clamped. The ENF

specimen is simply supported, and the downward vertical dis-

placement w2 is specified at the mid-span of the specimen.

The corresponding reaction force P2 is computed. The re-

sponse of the ELS and ENF is shown in Figure 8a and 8b. For

a loading-unloading cycle, excellent agreement of the FEM

results are obtained compared to the closed form solutions.

The FRMM test specimen is shown in Figure 5d, and is

used to evaluate empirical failure criteria for mixed-mode de-

lamination. The displacement w is specified at the tip of the

upper arm and the corresponding reaction force P is com-

puted. Mode I is 43% and Mode II is 57%. The response

for ct 2 and ct 4 is shown in Figure 9a and 9b respec-

tively. For a loading-unloading cycle, excellent agreement of

the FEM results are obtained compared to the closed form

solutions.

The MMB test specimen is shown in Figure 5c, and is

used to evaluate empirical failure criteria for mixed-mode de-

lamination. The length of the lever arm e described in the

report by Reeder 2° is chosen such that the mixed mode ra-

tio from pure Mode I to pure Mode II can be varied. In

this paper, e 43.72 ram, so that the Mode I and Mode II

contributions are 50% each. The MMB is simply supported,

and two proportional loads are applied. The load P1 is ap-

plied upward at the tip of the upper arm, and another load

/2,2 is applied downward at the mid-span. During the load-

ing, the ratio P1/P2 e/(e + L) is fixed. The responses for

ct 4 and ct 2 are shown in Figure 10a and 10b. The fi-

nite element response is compared to the analytical solutions

in the appendix. In the first analysis, geometric nonlinear-

ity is used. In the second analysis both geometric linearity

and nonlinearity are compared with the analytical solutions.

The discrepancies on the response corresponding to the stable

crack growth of the load-deflection response are because the

analytical solution does not consider the effects of geomet-

ric nonlinearities. Excellent agreement is obtained with the

analytical solutions.

CONCLUSIONS

An irreversible constitutive law that describes the delam-

ination process is presented. The constitutive law is imple-

mented with interface element to predict delamination. It pre-

dicts initiation of delamination based on a multi-axial stress

criteria, and progression of delamination based on an em-

pirical fracture criteria. A damage parameter is included to

prevent the restoration of the previous cohesive state between

the interfacial surfaces. To demonstrate the irreversibility ca-

pability of the constitutive law, steady-state crack growth is

simulated for quasi-static loading-unloading cycle of various

fracture test specimens. The finite element solutions are in

excellent agreement with the analytical solutions.
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APPENDIX

The beam analytical solutions based on linear elastic frac-
ture mechanics for the MMB test specimen are presented

without details. In general, the total energy release rate is

and PII associated to modes I and II respectively are defined
as

e \ 4L JPI' PII --c P1 (48)

The load P1 is defined in Figure 5d. The initial load-
deflection response is linear and given by

(49)
_* _" \ 4L "/ E1

where E is the Young's Modulus and I is the moment of in-
ertia. The load-deflection response, when delamination prop-

agates with a < L/2 is

16P, ( swI<  372
_* 3EI \64 U+aP_/ (50)

where /3 is the width of the beam. The load-displecement
relation when delamination propagates with a > £/2 is ob-
tained by solving the quadratic equation for a,

(64P_ + 3P_I - 64PIPH) a2 (51)

- (6& - 32pm,,L) - (3&L - 8/3EIGc) o

and substituting its solution into

16L (6e-L_ Pla a (52)

GT GI + GH (44)

GI and GH are the Mode I and Mode II energy release rate
contributions. The delamination propagates when,

Gr G_ Gy_+Gy} (45)

and G_ is the critical energy release rate, G_ _ and G_} are
the the Mode I and Mode II energy release rates at crack
propagation. For all the fracture test specimens, it is possi-

ble to express ¢ G'[_/G}_), where ¢ E [0, oc), so that the
G_ value can be computed based on the fracture criterion in

Equation (2)

G_ (1 + ¢) _ + \_j J (46)

The derivations to obtain the expression of ¢ for the MMB
specimen are omitted here, and is

GI G_[_ 4 (6c- L _
¢ GH G_} 3 \ 2e + L ] (47)

where e is the length of the lever arm, and L is the length of
the MMB specimen. For simplifying purposes, the loads PI

12 OF 12

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2002-1576


